一本战题雙面印製

淡江大學九十學年度日間部轉學生招生考試試題

系別:機械工程學系三年級

科目:熱 力 學

准帶項目請打「○」否則打「×	
計算機	字典
0	×

本試題共 2

- 1. Try to explain the following thermodynamic laws:
 - (1) the zeroth law of thermodynamics,
 - (2) the first law of thermodynamics,
 - (3) the second law of thermodynamics.

(15%)

- 2. Try to explain the following thermodynamic processes:
 - (1) reversible process.
 - (2) irreversible process.
 - (3) internally reversible process,
 - (4) isobaric process,
 - (5) adiabatic process.

(15%)

- 3. Using temperature-entropy diagram to explain the following thermodynamic cycles:
 - (1) Carnot power cycle,
 - (2) ideal Rankine cycle.
 - (3) ideal reheat vapor power cycle,
 - (4) air standard Otto cycle.
 - (5) air standard Diesel cycle.

(15%)

- 4. Answer the following true or false . If false , explain why .
 - (a) A process that violates the second law of thermodynamics violates the first law of thermodynamics.
 - (b) When a net amount of work is done by a closed system undergoing an internally reversible process, a net heat transfer of energy to the system also occurs.
 - (c) One corollary of the second law of thermodynamics states that the change in entropy of a closed system must be greater than zero or equal to zero.
 - (d) A closed system can experience an increase in entropy only when there is energy transfer by heat to the system during the process.
 - (e) Entropy is produced in ecery internally reversible process of a closed system.

(15%)

淡江大學九十學年度日間部轉學生招生考試試題

系別:機械工程學系三年級

科目:熱 力 學

准帶項目請打「〇」否則打「×	
計算機	字典
0	X

本試題共 2 頁

5. A closed system undergoes a thermodynamic cycle consisting of the following processes:

Process 1-2: adiabatic compression with $pV^{1.4}$ = constant from p_1 = 50 lbf/in², V_1 = 3 ft³ to V_2 = 1 ft³

Process 2-3: constant volume

Process 3-1: constant pressure, U₁-U₃=46.7 Btu

There are no significant changes in kinetic or potential energy.

(a) sketch the cycle on a p-V diagram.

(b) calculate the net work for the cycle, in Btu.

(c) calculate the heat transfer for process 2-3, in Btu.

(20%)

6. An electric motor operating at steady state draws a current of 10 amp with a voltage of 220V. The output shaft rotates at 1000RPM with a torque of $16 \, \text{N} \cdot \text{m}$ applied to an external load. The rate of heat transfer from the motor to its surroundings is related to the surface temperature T_0 and the ambient temperature T_0 by $hA(T_b - T_0)$, where $h=100 \, \text{W} \, / \text{m}^2 \cdot \text{K}$, $A=0.195 \, \text{m}^2$, and $T_0=293 \, \text{K}$. Energy transfers are considered positive in the directions indicated by the arrows as shown.

- (a) Determine the temperature To, in K.
- (b) For the motor as the system, determine the rate of entropy production, in kW/K.
- (c) If the system boundary is located to take in enough of the nearby surroundings for heat transfer to take place at temperature To, determine the rate of entropy production, in kW/K, for the enlarged system.

(20%)

